Global boundedness, interior gradient estimates, and boundary regularity for the mean curvature equation with boundary conditions
نویسنده
چکیده
where ν is the outward pointing unit normal of ∂Ω, and where cosθ is a given function on ∂Ω. (Thus, in the capillarity problem, we are considering geometrically a function u in Ω̄ whose graph has the prescribed mean curvature H and which meets the boundary cylinder in the prescribed angle θ.) Here, H = H(x,t) is assumed to be a given locally Lipschitz function in Ω×R satisfying the structural conditions
منابع مشابه
Non-cmc Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries
In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (2013), and Holst, Nagy, and Tsogtgerel (2008, 2009), and also on the work of Maxwell (2004, 2005, 2009) and Dain (2004), under reas...
متن کاملCurvature flows on four manifolds with boundary
Given a compact four dimensional smooth Riemannian manifold (M, g) with smooth boundary, we consider the evolution equation by Q-curvature in the interior keeping the T -curvature and the mean curvature to be zero and the evolution equation by T -curvature at the boundary with the condition that the Q-curvature and the mean curvature vanish. Using integral method, we prove global existence and ...
متن کاملGlobal Second Derivative Estimates for the Second Boundary Value Problem of the Prescribed Affine Mean Curvature and Abreu’s Equations
In this paper we prove the global second derivative estimates for the second boundary value problem of the prescribed affine mean curvature equation where the affine mean curvature is only assumed to be in L. Our result extends previous result by Trudinger and Wang in the case of globally bounded affine mean curvature and also covers Abreu’s equation.
متن کاملBoundary regularity for the Monge-Ampère and affine maximal surface equations
In this paper, we prove global second derivative estimates for solutions of the Dirichlet problem for the Monge-Ampère equation when the inhomogeneous term is only assumed to be Hölder continuous. As a consequence of our approach, we also establish the existence and uniqueness of globally smooth solutions to the second boundary value problem for the affine maximal surface equation and affine me...
متن کاملA MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004